Extractor
Agent to support specification-based extraction of content from documents. This could include dates, clauses, snippets with complex conditionality, retries using alternatives, and multi-class specifications.
LLMQuerierExtractor(name, cred={}, platform='openai', model='gpt-4o-mini', searchapi='serpapi', statestore='redis', topk=7)
→
Bases: BaseLLMAgent
Class to do querying of a docset and extracting specific information fields using LLMs Query can be run against a specified set of documents that act as context to constrain the answers
init the LLM query agent name: name of the agent cred: credentials object platform: name of the LLM platform backend to use default to OpenAI GPT platform for now, Azure is also supported will be extended in the future to suuport other models memory_size: how many tokens of memory to use when chatting with the LLM
Source code in llmsdk/agents/extractor.py
extracts_to_df(info)
→
Convert extracts object into dataframe
Source code in llmsdk/agents/extractor.py
process_spec(spec)
→
process a profilespec
Source code in llmsdk/agents/extractor.py
process_spec_queries(spec)
→
take a spec containing questions and answer them against the docset indexed by the agent
Source code in llmsdk/agents/extractor.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
|
process_spec_signatures(spec)
→
check if signatures are present
Source code in llmsdk/agents/extractor.py
query(query, instructions='', mode='internal')
→
run a query on an index using an llm chain object query: query string mode: 'internal' for querying over docset, 'search' for searching the web
Source code in llmsdk/agents/extractor.py
read_document(source, content, metadata={}, params={}, store='chroma', persist_directory=None)
→
wrapper function that takes in the path to a document and sets it up for reading by the agent this function will create a new index if the agent does not already have one else it will use the existing index pointer needs the persist_directory that the index will use
Source code in llmsdk/agents/extractor.py
run_query_internal(query, instructions='')
→
run a query using llm on an internal docset indexed in index this is useful when looking for answers using a private source of data
Source code in llmsdk/agents/extractor.py
run_query_search(query, instructions='')
→
run a query using the search agent this is useful when looking for answers using a search engine